A General Framework Information Loss of Utility-Based Anonymization in Data Publishing

نویسندگان

چکیده

To build anonymization, the data anonymizer must determine following three issues: Firstly, which to be preserved? Secondly, adversary background knowledge used disclosure anonymized data? Thirdly, The usage of We have different anonymization techniques from previous three-question according and information (information utility). In other words, lead loss. this paper, we propose a general framework for utility-based minimize loss in published with trade-off grantee achieving required privacy level.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Utility-preserving anonymization for health data publishing

BACKGROUND Publishing raw electronic health records (EHRs) may be considered as a breach of the privacy of individuals because they usually contain sensitive information. A common practice for the privacy-preserving data publishing is to anonymize the data before publishing, and thus satisfy privacy models such as k-anonymity. Among various anonymization techniques, generalization is the most c...

متن کامل

Information based data anonymization for classification utility

Article history: Received 27 September 2010 Received in revised form 10 April 2011 Accepted 5 July 2011 Available online 22 July 2011 Anonymization is a practical approach to protect privacy in data. The major objective of privacy preserving data publishing is to protect private information in data whereas data is still useful for some intended applications, such as building classification mode...

متن کامل

Predictive Anonymization: Utility-Preserving Publishing of Sparse Recommendation Data

Recently, recommender systems have been introduced to predict user preferences for products or services. In order to seek better prediction techniques, data owners of recommender systems such as Netflix sometimes make their customers’ reviews available to the public, which raises serious privacy concerns. With only a small amount of knowledge about individuals and their ratings to some items in...

متن کامل

Fast Data Anonymization with Low Information Loss

Recent research studied the problem of publishing microdata without revealing sensitive information, leading to the privacy preserving paradigms of k-anonymity and `-diversity. k-anonymity protects against the identification of an individual’s record. `-diversity, in addition, safeguards against the association of an individual with specific sensitive information. However, existing approaches s...

متن کامل

Utility-guided Clustering-based Transaction Data Anonymization

Transaction data about individuals are increasingly collected to support a plethora of applications, spanning from marketing to biomedical studies. Publishing these data is required by many organizations, but may result in privacy breaches, if an attacker exploits potentially identifying information to link individuals to their records in the published data. Algorithms that prevent this threat ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Turkish Journal of Computer and Mathematics Education

سال: 2021

ISSN: ['1309-4653']

DOI: https://doi.org/10.17762/turcomat.v12i5.2102